Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра Технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.В.03 – ПРИКЛАДНАЯ ТЕОРИЯ КОЛЕБАНИЙ

Направление подготовки 23.03.02 Наземные транспортно-технологические комплексы

Направленность (профиль) — «Автомобиле- и тракторостроение» Квалификация — бакалавр

Количество зачётных единиц (часов) – 6 (216 ч)

Инес /В.В. Илюшин/ Разработчик: доцент, к.т.н

Рабочая программа утверждена на заседании кафедры Технологических машин и технологии машиностроения (протокол № 8 от «04» февраля 2021 года).

/Н.В. Куцубина/ Зав. кафедрой __

Рабочая программа рекомендована к использованию в учебном процессе методической комиссией Инженерно-технического института

(протокол № 6 от «О4 » фораля 2021 года)

Председатель методической комиссии ИТИ /А.А.Чижов/

Рабочая программа утверждена директором инженерно-технического института

Директор ИТИ _ Свеш

/Е.Е.Шишкина/

«<u>О4</u>» <u>марта</u> 2021 года

Оглавление

1. Общие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесен-	
ных с планируемыми результатами освоения образовательной програм-	
мы	4
3. Место дисциплины в структуре образовательной программы	5
4. Объем дисциплины в зачетных единицах с указанием количества акаде-	
мических часов, выделенных на контактную работу обучающихся с пре-	
подавателем (по видам учебных занятий) и на самостоятельную работу	
обучающихся	6
5. Содержание дисциплины, структурированное по темам (разделам) с ука-	
занием отведенного на них количества академических часов	6
5.1. Трудоемкость разделов дисциплины	6
5.2. Содержание занятий лекционного типа	7
5.3. Темы и формы занятий семинарского типа	8
5.4. Детализация самостоятельной работы	9
6. Перечень учебно-методического обеспечения по дисциплине	9
7. Фонд оценочных средств для проведения промежуточной аттестации	
обучающихся по дисциплине	11
7.1. Перечень компетенций с указанием этапов их формирования в про-	
цессе освоения образовательной программы	11
7.2. Описание показателей и критериев оценивания компетенций на раз-	
личных этапах их формирования, описание шкал оценивания	12
7.3. Типовые контрольные задания или иные материалы, необходимые	
для оценки знаний, умений, навыков и (или) опыта деятельности,	
характеризующих этапы формирования компетенций в процессе	
освоения образовательной программы	12
7.4. Соответствие шкалы оценок и уровней сформированных компетен-	
ций	16
8. Методические указания для самостоятельной работы обучающихся	17
9. Перечень информационных технологий, используемых при осуществле-	
нии образовательного процесса по дисциплине	18
10. Описание материально-технической базы, необходимой для осуществ-	
ления образовательного процесса по дисциплине	19

1. Общие положения

Дисциплина «**Прикладная теория колебаний**» относится к блоку Б1 учебного плана, входящего в состав образовательной программы высшего образования 23.03.02 — «Наземные транспортно-технологические комплексы» (профиль — «Автомобиле и тракторостроение»).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «**Прикладная теория колебаний**» являются:

- Федеральный закон "Об образовании в Российской Федерации", утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры.
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы (уровень бакалавриата), утвержденный приказом Министерства образования и науки Российской Федерации № 162 от 06.03.2015;
- Профессиональный стандарт «Конструктор в автомобилестроении» утвержденный приказом Министерства труда и социальной защиты от Российской Федерации от 13 марта 2017 г. № 258н;
- Учебные планы образовательной программы высшего образования направления 23.03.02 Наземные транспортно-технологические комплексы (направленность «Автомобиле- и тракторостроение») подготовки бакалавров по очной и заочной форме обучения, одобренный Ученым советом УГЛТУ (протокол №2 от 20.06.2019).

Обучение по образовательной программе 23.03.02 — «Наземные транспортнотехнологические комплексы» (направленность (профиль) — «Автомобиле- и тракторостроение») осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель освоения дисциплины — получение знаний и практических навыков, позволяющих выпускнику вуза на современном уровне осуществлять расчет колебательных систем автомобилей и тракторов

Задачи дисциплины:

- формирование устойчивого комплекса знаний о конструировании и расчете двигателей и систем подрессоривания автомобилей и тракторов;
- формирование представлений об истории, тенденциях и перспективах развития двигателей и систем подрессоривания транспортных средств, принципах их конструирования;
- привитие навыков анализа технических решений и методов расчета двигателей, систем подрессоривания и их элементов.

Процесс изучения дисциплины направлен на формирование следующих профессиональных компетенций:

ПК-6 – способен в составе коллектива исполнителей участвовать в разработке программ и методик испытаний наземных транспортно-технологических машин и их технологического оборудования;

ПК-11 – способен в составе коллектива исполнителей участвовать в разработке документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортно-технологических машин и их технологического оборудования

В результате изучения дисциплины обучающийся должен:

знать:

- методы расчета кинематических и динамических параметров движения механизмов;
- основные законы и положения динамики точки и твердого тела;
- физическую сущность явлений, происходящих в ДВС автомобилей и тракторов;

уметь:

- применять математические методы, физические законы при решении практических задач, обосновывать расчетные схемы конструкций и механизмов.
- определять характер работы элементов ДВС, трансмиссии и ходовой части транспортных и технологических машин;
- разрабатывать программы и методики испытаний наземных транспортнотехнологических машин и их технологического оборудования;

владеть:

- методами статического и динамического расчета элементов конструкций и механизмов;
- навыками разработки документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортно-технологических машин и их технологического оборудования

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к вариативной части дисциплин специализации, что означает формирование в процессе обучения у обучающегося основных профессиональных знаний и компетенций в рамках выбранного профиля.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и защиты выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты.

Пепечень об	еспечивающих.	convmcme	гуюших и о	беспечиваемых (дисииплин

No	Обеспечивающие	Сопутствующие	Обеспечиваемые
1	Теоретическая меха- ника.	Детали машин и основы конструирования. Спецглавы	Испытания автомобилей и тракторов и основы научных исследований
2	Теоретическая механика. Спецглавы.		Теория двигателей внутреннего сгорания
3			Динамика двигателей внутреннего сгорания
4	Теория механизмов и машин.		Расчет и конструирование автомобилей и тракторов
5	Сопротивление ма- териалов		Моделирование процессов транс- портно-технологических комплек- сов
6	Детали машин и основы конструирования		Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Вид учебной работы	Всего академи	Всего академических часов			
	очная форма	заочная форма			
Контактная работа с преподавателем:	80	16			
лекции (Л)	32	6			
практические занятия (ПЗ)	48	10			
лабораторные работы (ЛР)	-	-			
Самостоятельная работа обучающихся:	136	200			
изучение теоретического курса	60	151			
подготовка к текущему контролю	40	40			
подготовка к промежуточной аттестации	36	9			
Вид промежуточной аттестации:	экзамен	экзамен			
Общая трудоемкость	2/216	2/216			

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

ο παν φορμά σου τεπιν						
No		Л	ПЗ	ЛР	Всего	Самостоя-
п/п	Наименование раздела дисциплины				контактной работы	тельная ра- бота
1	Колебания в двигателях внутреннего сгорания	16	22	-	38	50
2	Колебания в системе подрессоривания автомобиля. Плавность хода	16	26	-	42	50
Итого по разделам:		32	48	-	80	100
Промежуточная аттестация (экзамен)		X	X	X	X	36
	Всего				216	

заочная форма обучения

	заочная форма обучения					
No	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего	Самостоя-
п/п					контактной работы	тельная работа
1	Колебания в двигателях внутреннего сгорания	3	5		8	95
2	Колебания в системе подрессоривания автомобиля. Плавность хода	3	5	-	8	96

No	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего	Самостоя-
Π/Π					контактной	тельная
					работы	работа
Итого по разделам:		6	10	-	16	191
Промежуточная аттестация (экзамен)		37	v	X	v	0
Hpo	межуточная аттестация (экзамен)	X	Λ	Λ	A	

5.2 Содержание занятий лекционного типа

Раздел 1. Колебания в двигателях внутреннего сгорания

Лекция 1. Введение. Основные характеристики коленчатых валов как колебательной системы

Основные характеристики колебательной системы. Основные термины и определения. Факторы, вызывающие колебания кругильной системы. Схема нагружения коленчатого вала переменными моментами.

Лекция 2. Крутильные колебания коленчатых валов

Уравнение движения эквивалентной кругильной системы коленчатого вала. Частота и формы собственных колебаний кругильной системы. Гармонический анализ кругящих элементов. Частотная диаграмма кругильных колебаний.

Лекция 3. Синтез эквивалентной крутильной системы

Основные принципы, определяющие методику синтеза эквивалентной крутильной системы. Методика определения моментов инерции для участков эквивалентной системы.

Лекция 4. Частота и формы собственных колебаний кругильной системы

Вынужденные колебания крутильной системы под действием совокупности обобщенных сил. Собственные колебания как частный случай вынужденных колебаний крутильной системы.

Лекция 5. Фазовые соотношения гармоник крутящих моментов, действующих на отдельных кривошипах

Фазовые соотношения для произвольной моторной гармоники, действующей на отдельном кривошипе. Фазовые диаграммы гармоник для различных моторных индексов.

Лекция 6. Способы уменьшения амплитуд вынужденных крутильных колебаний

Основные способы уменьшения амплитуд вынужденных кругильных колебаний. Схемы гасителей кругильных колебаний.

Лекция 7. Основные сведения об изгибных колебаниях коленчатых валов

Основные причины изгибных колебаний коленчатых валов. Способы устранения изгибных колебаний коленчатых валов.

Лекция 8. Колебания корпусных деталей ДВС

Основные принципы построения конечно-элементных моделей корпусных деталей ДВС. Характерные формы собственных колебаний в различных диапазонах частот.

Раздел 2. Колебания в системе подрессоривания автомобиля. Плавность хода

Лекция 9. Плавность хода автомобиля

Определение плавности хода автомобиля. Оценочные показатели плавности хода. Основные требования ГОСТ 12.1.012-90. Оценка вибронагруженности водителя и пассажиров.

Лекция 10. Характеристики и параметры вибрационной системы автомобиля

Упругие элементы системы подрессоривания и их характеристики. Диссипативные элементы системы подрессоривания и их характеристики.

Лекция 11. Характеристики неровностей дороги

Математическое описание неровностей дороги. Профили неровностей опорной поверхности. Классификация неровностей дороги.

Лекция 12. Оценка плавности хода автомобиля при движении по дороге со случайным микропрофилем

Методы оценки плавности хода автомобиля при движении по дороге со случайным микропрофилем. Их графические характеристики.

Лекция 13. Основы анализа нелинейных виброзащитных систем

Простейшая математическая модель нелинейной виброзащитной системы. Ее дифференциальное уравнение.

Лекция 14. Влияние конструктивных факторов на плавность хода автомобиля

Влияние типов и параметров подвески. Влияние шин. Конструкция и параметры сидений. Распределение подрессоренной массы по длине кузова.

Лекция 15. Влияние эксплуатационных факторов на плавность хода автомобиля

Эксплуатационные факторы (степень нагрузки автомобиля, состояние подвески автомобиля, состояние шин и их модель, давление воздуха в шинах, степень квалификации водителя) и их влияние на плавность хода.

Лекция 16. Оптимизация параметров подвески

Алгоритм выбора параметров подвески: схема расчета оптимальных параметров подвески. Последовательность действий при выполнении этого алгоритма

5.3 Темы и формы практических занятий

No	Наименование раздела дисциплины	Форма проведения	Трудоемн	сость, час
JN≌	(модуля) занятия		очная	заочная
	Раздел 1. Колебания в дви	орания		
1.1	Уравнение движения эквивалентной крутильной системы коленчатого вала	Практические занятия	2	1
1.2	Частота и формы собственных колебаний крутильной системы	Практические занятия	2	1
1.3	Гармонический анализ крутящих моментов	Практические занятия	2	2
1.4	Частотная диаграмма крутильных колебаний	Практические занятия	2	-
1.5	Потери энергии при колебаниях	Практические занятия	4	-
1.6	Работы возбуждающих моментов при резонансе	Практические занятия	2	-
1.7	Работа моментов сопротивления	Практические занятия	2	1
1.8	Амплитуды угловых смещений элементов крутильной системы	Практические занятия	2	1
1.9	Напряжения в элементах вала от крутильных колебаний	Практические занятия	4	1
	Раздел 2. Колебания в системе подрессо	оривания автомобиля. І	Ілавность	хода
2.1	Упругие характеристики и параметры виб-	Практические занятия	2	-

№	Наименование раздела дисциплины	Форма проведения	Трудоемі	кость, час
710	(модуля)	занятия	очная	заочная
	рационной системы автомобиля			
2.2	Диссипативные характеристики и пара- метры вибрационной системы автомобиля	Практические занятия	2	-
2.3	Динамические модели парциальных систем	Практические занятия	2	-
2.4	Статистические математические модели микропрофиля	Практические занятия	2	1
2.5	Динамическая модель автомобиля для анализа плавности хода	Практические занятия	4	2
2.6	Математическая модель автомобиля для анализа плавности хода	Практические занятия	2	1
2.7	Приближенные модели колебаний кузова	Практические занятия	2	-
2.8	Особенности моделирования колебаний многоосных автомобилей	Практические занятия	4	1
2.9	Свободные колебания подрессоренной и неподрессоренной массы	Практические занятия	2	-
2.10	Свободные колебания с учетом сил сопротивления	Практические занятия	2	-
2.11	Вынужденные колебаний автомобиля	Практические занятия	2	
		Итого часов:	48	10

5.4 Детализация самостоятельной работы

№	Наименование раздела дис-	Вид самостоятельной работы	Трудоемкость, час	
	циплины (модуля)		очная	заочная
1	Колебания в двигателях	Изучение теоретического курса: чтение литературы, составление конспектов	30	75
	внутреннего сгорания	Подготовка к текущему контролю	20	20
2	Колебания в системе подрессоривания автомобиля.	Изучение теоретического курса: чтение литературы, составление конспектов	30	76
	Плавность хода	Подготовка к текущему контролю	20	20
	Итого по разделам		100	191
	Промежуточная аттестация	Изучение лекционного материала, литературных источников в соответствии с тематикой	36	9
Ит	ого:		136	200

6. Перечень учебно-методического обеспечения по дисциплине

Основная и дополнительная литература

№	Автор, наименование	Год изда- ния	Примечание		
	Основная литература				
1.	Бать, М. И. Теоретическая механика в примерах и задачах.	2022	Полнотекстовый		
	Том 1. Статика и кинематика / М. И. Бать, Г. Ю. Джанелид-		доступ при вхо-		
	зе, А. С. Кельзон. — 13-е изд., стер. — Санкт-Петербург:		де по логину и		
	Лань, 2022. — 672 с. — ISBN 978-5-507-44059-7. — Текст:		паролю*		
	электронный // Лань : электронно-библиотечная система.				

No	Автор, наименование	Год изда- ния	Примечание
	— URL: https://e.lanbook.com/book/203000 — Режим доступа: для авториз. пользователей.		
2.	Никитин, Н. Н. Курс теоретической механики : учебник / Н. Н. Никитин. — 8-е изд., стер. — Санкт-Петербург : Лань, 2022. — 720 с. — ISBN 978-5-8114-1039-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/210659 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при входе по логину и паролю*
3.	Бутенин, Н. В. Курс теоретической механики : учебное пособие / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. — 11-е изд., стер. — Санкт-Петербург : Лань, 2009. — 736 с. — ISBN 978-5-8114-0052-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/29 — Режим доступа: для авториз. пользователей.	2009	Полнотекстовый доступ при вхо- де по логину и паролю*
	Дополнительная литература		T
4.	Мещерский, И. В. Задачи по теоретической механике: учебное пособие / И. В. Мещерский; под редакцией В. А. Пальмова, Д. Р. Меркина. — 52-е изд., стер. — Санкт-Петербург: Лань, 2022. — 448 с. — ISBN 978-5-8114-4190-7. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/206417 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при вхо- де по логину и паролю*
5.	Дрожжин, В. В. Сборник заданий по теоретической механике. Кинематика: учебное пособие / В. В. Дрожжин. — 2-е изд., испр. — Санкт-Петербург: Лань, 2022. — 192 с. — ISBN 978-5-8114-1297-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/210848 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при вхо- де по логину и паролю*
6.	Доев, В. С. Сборник заданий по теоретической механике на базе MATHCAD: учебное пособие / В. С. Доев, Ф. А. Доронин. — Санкт-Петербург: Лань, 2022. — 592 с. — ISBN 978-5-8114-0821-4. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/210245 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при вхо- де по логину и паролю*
7.	Диевский, В. А. Теоретическая механика. Интернеттестирование базовых знаний: учебное пособие / В. А. Диевский, А. В. Диевский. — Санкт-Петербург: Лань, 2022. — 144 с. — ISBN 978-5-8114-1058-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/210242 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при вхо- де по логину и паролю*

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к:

- 1. Электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/);
- 2. ЭБС Издательства Лань http://e.lanbook.com/;
- 3. ЭБС Университетская библиотека онлайн http://biblioclub.ru/;
- 4. Научной электронной библиотеке (https://elibrary.ru/);
- 5. Электронной библиотеке «Наука и техника» (<u>http://n-t.ru/</u>);

предоставляющих открытый доступ к научно-популярным, учебным, методическим и просветительским изданиям, а также содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебнометодической литературы.

Справочные и информационные системы

- 1. Справочная Правовая Система КонсультантПлюс (http://www.consultant.ru/);
- 2. Единое окно доступа к образовательным ресурсам Федеральный портал (http://window.edu.ru/),
- 3. «Техэксперт» профессиональные справочные системы (<u>http://техэксперт.pyc</u>);

Профессиональные базы данных

- 1. Библиотека Машиностроителя (https://lib-bkm.ru/);
- 2. База данных «Единая система конструкторской документации» (<u>http://eskd.ru/</u>);
- 3. База данных «Открытая база ГОСТов» (https://standartgost.ru/);
- 4. Энциклопедия по машиностроению XXL -: оборудование, материаловедение, механика (http://mashxxl.info/index/).

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30.11.1994 года N51-Ф3.
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020).
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-ФЗ.
- 4. Федеральный закон «Об информации, информационных технологиях и о защите информации» от 27.07.2006 N 149-ФЗ.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ПК-6 — способен в составе коллектива исполнителей участвовать в разработке программ и методик испытаний наземных транспортно-технологических машин и их технологического оборудования	Промежуточный контроль: контрольные вопросы к экзамену Текущий контроль: практические задания, задания в тестовой форме
ПК-11 — способен в составе коллектива исполнителей участвовать в разработке документации для технического	Промежуточный контроль: контрольные вопросы к экзамену
контроля при исследовании, проектировании, производ-	Текущий контроль: практиче-
стве и эксплуатации наземных транспортнотехнологических машин и их технологического оборудо-	ские задания, задания в тестовой форме
вания	

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на контрольные вопросы экзамена (промежуточный контроль формирования компетенций ПК-6, ПК-11).

ответ ответ осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

хорошо - дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные обучающимся с помощью «наводящих» вопросов;

удовлетворительно - дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания обучающимсяих существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

неудовлетворительно - обучающийсядемонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценивания практических заданий (текущий контроль формирования компетенций ПК-6, ПК-11):

отпично: выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо: выполнены все задания, обучающийся без с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно: выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

неудовлетворительно: обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенции ПК-6, ПК-11)

По итогам выполнения тестовых заданий оценка производится по четырехбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные вопросы к экзамену (промежуточный контроль)

- 1. Силы, действующие на материальную точку, совершающую колебательные движения. Кинетическая и потенциальная энергии систем.
- 2. Характерные признаки любой колебательной системы. Условия возникновения колебаний. Типы колебаний.
- 3. Идеализированные пассивные элементы электрических схем и их компонентные уравнения. Законы электрических цепей для мгновенных значений.
- 4. Свойства идеализированною операционного усилителя (ОУ) как схемного элемента. Линейные статические элементы на ОУ.
- 5. Модели элементов механических систем с линейным перемещением: масса, трение, упругость. Законы Ньютона.
- 6. Модели элементов механических систем с вращательным движением: момент инерции, трение, скручивающая пружина. Составление уравнений, описывающих вращательное движение.
 - 7. Математическая модель двигателя постоянного тока в виде ДУ.
- 8. Описание динамики электрической цени или системы с помощью дифференциального уравнения п-го порядка (модель вход-выход). Запись ДУ в операторной форме с помощью дифференциального оператора. Передаточные функции.
 - 9. Линеаризация характеристик статических элементов.
 - 10. Линеаризация физических систем (линеаризация диф. уравнений).
- 11. Общее решение линейного ДУ второго порядка с правой частью. Принцип суперпозиции. Начальные условия. Собственные колебания динамических систем.
 - 12. Разряд конденсатора на индуктивную катушку. Три вида разряда.
 - 13. Включение простого колебательного контура под постоянное напряжение.
 - 14. Переменные состояния динамической системы.
 - 15. Дифференциальные уравнения состояния, схемы моделирования.
- 16. Переходная матрица состояния. Полное решение уравнений состояния с помощью переходной матрицы состояния.
 - 17. Прямое преобразование Лапласа и его свойства (теоремы).
 - 18. Уравнения электрического равновесия электрической цени в операторной форме.
 - 19. Операторные схемы замещения двухполюсных элементов и электрических цепей.
- 20. Обратное преобразование Лапласа. Теорема разложения. Табличный и программный метод преобразования Лапласа.
 - 21. Решение уравнений состояния операторным методом.
- 22. Операторные характеристики линейных электрических цепей и систем. Полюснонулевая диаграмма.
- 23. Схемы моделирования в переменных состояния: канонические формы управляемости и наблюдаемости.
 - 24. Операторные схемы замещения электрических цепей.
- 25. Активные цепи и системы с обратной связью и их передаточные функции. Связь между передаточной функцией и уравнениями состояния.
 - 26. Структурные схемы. Преобразования структурных схем.
 - 27. Преобразования подобия.
- 28. Единичные функции и их свойства. Временные характеристики линейных электрических цепей и систем.
- 29. Применение операторного метода для определения реакции цепи или системы управления на тестовые входные сигналы.
- 30. Передаточные функции и временные характеристики типовых звеньев систем управления.
- 31. Показатели качества переходных процессов цепей и систем второго порядка. Требования к временным характеристикам при синтезе.
 - 32. Моделирование электрических цепей и систем с помощью MATLAB.

- 33. Комплексные частотные характеристики цепей и систем.
- 34. Логарифмические характеристики цепей и систем.
- 35. Характеристики систем управления. Чувствительность.
- 36. Точность в установившихся режимах.
- 37. Понятие о резонансе в электрических цепях.
- 38. Резонанс в последовательном колебательном контуре.
- 39. Резонанс в параллельном колебательном контуре.
- 40. Резонанс в связанных контурах.
- 41. Некоторые применения теории резонанса.
- 42. Пассивные и активные электрические фильтры.
- 43. Определение устойчивости равновесного состояния системы
- 44. Критерий устойчивости Русса— Гурвица.
- 45. Критерий устойчивости Михайлова.

Примеры заданиий практических занятий (текущий контроль)

ПР 1. Уравнение движения эквивалентной крутильной системы коленчатого вала

Решение уравнения движения эквивалентной кругильной системы коленчатого вала

ПР 2. Частота и формы собственных колебаний крутильной системы.

Решение системы уравнений собственных колебаний. Определение частот и форм собственных колебаний крутильной системы. Их графическая интерпретация.

ПР 3. Гармонический анализ крутящих моментов

Решение тригонометрического полинома, описывающего крутящие моменты на кривошипе.

ПР 4. Частотная диаграмма крутильных колебаний

Построение частотной диаграммы крутильных колебаний. Определение возможных резонансных режимов по построенной частотной диаграмме крутильных колебаний.

ПР 5. Потерн энергии при колебаниях

Решение уравнения, описывающего свободные колебания крутильной системы относительно обобщенных координат. Определение основных факторов, вызывающих потери энергии при колебаниях в крутильной системе.

ПР 6. Работы возбуждающих моментов при резонансе

Определение работы резонирующей гармоники на i-ом кривошипе. Определение суммарной работы возбуждающих моментов на всех кривошипах.

ПР 7. Работа моментов сопротивления

Определение работы момента сопротивления на i-ом кривошипе. Определение суммарной работы моментов сопротивления на всех кривошипах.

ПР 8. Амплитуды угловых смещений элементов крутильной системы

Определение амплитуд угловых смещений элементов крутильной системы.

ПР 9. Напряжения в элементах вала от крутильных колебаний

Определение напряжений в элементах вала от крутильных колебаний.

ПР 10 Упругие характеристики и параметры вибрационной системы автомобиля

Построение характеристик упругих элементов систем подрессоривания различных транспортных средств.

ПР 11. Диссипативные характеристики и параметры вибрационной системы автомобиля

Построение характеристик диссипативных элементов систем подрес-соривания различных транспортных средств.

ПР 12. Динамические модели парциальных систем

Рассмотрение примеров различных динамических моделей парциальных систем. Определение коэффициентов сопротивления диссипативных элементов.

ПР 13. Статистические математические модели микропрофиля

Рассмотрение примеров различных статистических математических моделей микропрофиля опорной поверхности. Построение корреляционных функций математических моделей микропрофиля опорной поверхности.

ПР 14. Динамическая модель автомобиля для анализа плавности хода

Построение динамических моделей колебаний кузова автомобиля в продольной и поперечной плоскостях.

ПР 15. Математическая модель автомобиля для анализа плавности хода.

Составление математических моделей колебаний кузова автомобиля в продольной и поперечной плоскостях для анализа плавности хода.

ПР 16. Приближенные модели колебаний кузова

Рассмотрение возможных способов упрощения математических моделей колебаний кузова автомобиля.

ПР 17. Особенности моделирования колебании многоосных автомобилей

Решение дифференциальных уравнений колебаний многоосных автомобилей. Построение динамических моделей балансирных тележек.

ПР 18. Свободные колебания подрессоренной и неподрессоренной массы

Составление математической модели свободных колебаний подрессоренной массы. Проведение частотного анализа динамической колебательной системы.

Составление математической модели свободных колебаний неподрессоренной массы. Проведение частотного анализа динамической колебательной системы.

ПР 19. Свободные колебания с учетом сил сопротивления

Составление математической модели свободных колебаний с учетом сил сопротивления. Решение дифференциального уравнения математической модели свободных колебаний с учетом сил сопротивления.

ПР 20. Вынужденные колебаний автомобиля

Составление математической модели вынужденных колебаний. Рассмотрение примера частот колебаний конкретного транспортного средства.

Пример задания в тестовой форме (текущий контроль)

- 1. Груз на пружине совершает 30 колебаний за 3 мин. Каков период колебаний груза? 1) 36c
- 2) 0,6c
- 3) 0,18c
- 4) 6c
- 5) 0,36c
- 2. Материальная точка совершает гармонические колебания по закону $x=0,2\sin(\pi t+\pi/4)$ м. Начальная фаза этого колебания...
 - 1) π
 - $2) -\pi$
 - 3) $\pi/4$
 - 4) πt
 - 5) $\pi t + \pi/4$
- 3. Какова длина волны, распространяющейся со скоростью v = 10м/с, если ее частота v = 0.1с⁻¹?
 - 1)0,1m
 - 2)3,14m
 - 3)1_M
 - 4)10_M
 - 5)100M
 - 4. Выражение m $\omega^2 x_{\rm m}^2/2$ означает
 - 1) максимальную скорость тела;
 - 2) максимальное ускорение тела;
 - 3) максимальную силу, действующую на тело;
 - 4) максимальную энергию тела;
 - 5) максимальное смещение тела от положения равновесия.

- 5. Уравнение движения (II закон Ньютона) поплавка (цилиндра) плотностью ρ и высотой h, совершающего колебания на поверхности воды, ρ ha=- $\rho_B gx$, где a -ускорение поплавка, g- ускорение свободного падения, x- смещение поплавка от положения равновесия, ρ в плотность воды. Циклическая частота таких колебаний определяется формулой
 - 1) $\sqrt{\rho_B g/\rho h}$
 - $2)\sqrt{\rho_B x/\rho a}$
 - 3) $\sqrt{\rho ha/g}$
 - $4)\sqrt{\rho h/\rho_{\scriptscriptstyle B}g}$
 - 5) $\sqrt{h/\rho\rho_B}$

7.4. Соответствие балльной шкалы оценок и уровней сформированных компетенций

Уровень сфор- мированных	Оценка	Пояснения	
компетенций		Honenemm	
Высокий	отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся демонстрирует свободное владение материалом: - применяет математические методы, физические законы при решении практических задач, обосновывать расчетные схемы конструкций и механизмов; - определяет характер работы элементов ДВС, трансмиссии и ходовой части транспортных и технологических машин; - разрабатывает программы и методики испытаний наземных транспортно-технологических машин и их технологического оборудования; - владеет навыками разработки документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортнотехнологических машин и их технологического оборудования	
Базовый	хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся владеет материалом - применяет математические методы, физические законы при решении практических задач, обосновывать расчетные схемы конструкций и механизмов; - определяет характер работы элементов ДВС, трансмиссии и ходовой части транспортных и технологических машин; - разрабатывает программы и методики испытаний наземных транспортно-технологических машин и их технологического оборудования; - владеет навыками разработки документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортнотехнологических машин и их технологического оборудования	
Пороговый	удовлетвори- тельно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен под руководством:	

Уровень сфор- мированных компетенций	Оценка	Пояснения
		 применять математические методы, физические законы при решении практических задач, обосновывать расчетные схемы конструкций и механизмов; определять характер работы элементов ДВС, трансмиссии и ходовой части транспортных и технологических машин; разрабатывать программы и методики испытаний наземных транспортно-технологических машин и их технологического оборудования; владеть навыками разработки документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортнотехнологических машин и их технологического оборудования
Низкий	неудовлетво- рительно	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не владеет материалом, не способен: - применять математические методы, физические законы при решении практических задач, обосновывать расчетные схемы конструкций и механизмов; - определять характер работы элементов ДВС, трансмиссии и ходовой части транспортных и технологических машин; - разрабатывать программы и методики испытаний наземных транспортно-технологических машин и их технологического оборудования; - владеть навыками разработки документации для технического контроля при исследовании, проектировании, производстве и эксплуатации наземных транспортнотехнологических машин и их технологического оборудования

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа— планируемая учебная, учебно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов). Самостоятельная работа студентов в вузе является важным видом их учебной и научной деятельности.

В процессе изучения дисциплины «Прикладная теория колебаний» направления 23.03.02 *основными видами самостоятельной работы* являются:

- изучение теоретического курса;
- подготовка к текущему контролю;
- подготовка к промежуточной аттестации.

Изучение теоретического курса включает в себя:

- изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной периодической и научной ин-

формации;

- изучение и систематизацию официальных государственных документов: законов, постановлений, указов, нормативно-инструкционных и справочных материалов с использованием информационно-поисковых систем «Консультант Плюс», «Гарант», глобальной сети «Интернет».

Подготовка к текущему контролю заключается в повторении материала лекций и практических занятий с целью успешного прохождения тестирования.

Задания в тестовой форме сформированы по всем разделам дисциплины и рассчитаны на самостоятельную работу без использования вспомогательных материалов, то есть при их выполнении не следует пользоваться учебной и другими видами литературы. Прочитав задание, следует выбрать правильный ответ.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к экзамену.

Подготовка к промежуточной аттестации предполагает:

- изучение основной и дополнительной литературы;
- изучение конспектов лекций;
- изучение конспектов практических занятий;
- дистанционное тестирование.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов.
- Практические занятия по дисциплине проводятся с использованием платформы MOODLE, Справочной правовой системы «Консультант Плюс».

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах и принципах работы с документами, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, практическое занятие, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и лабораторно-практических методов обучения.

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;

- программная система для обнаружения текстовых заимствований в учебных и научных работах "Антиплагиат.ВУЗ";
- двух- и трёхмерная система автоматизированного проектирования и черчения AutoCAD, КОМПАС-3D.

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

треоования к аудиториям			
Наименование специальных помещений и	Оснащенность специальных помещений и		
помещений для самостоятельной работы	помещений для самостоятельной работы		
Помещение для лекционных и практических занятий, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Переносная мультимедийная установка (про- ектор, экран). Учебная мебель		
Помещения для самостоятельной работы	Столы компьютерные, стулья. Персональные		
	компьютеры. Выход в Интернет, электрон-		
	ную информационную образовательную сре-		
	ду Университета.		
Помещение для хранения и профилактическо-	Стеллажи. Оборудование. Раздаточный мате-		
го обслуживания учебного оборудования	риал.		